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Integral relations are derived for a plane laminar boundary layer of weak polymer solutions
with rigid ellipsoidal macromolecules. The universal equation is written out for generaliz-
ably-similar solutions to the problem.

For approximate solutions to problems in the boundary-layer theory for Newtonian fluids, one gen-
erally uses integral relations. Tor a boundary layer of a weak polymer solution one can, obviously, also
construct approximate solutions on the basis of integral relations applied to such media.

We will consider a steady two-dimensional flow of a weak polymer solution the macromolecules in
which can be simulated hydrodynamically by rigid ellipsoids of revolution near a solid surface, in conven-
tional boundary-layer coordinates. As the rheological equation of state for the given system will serve the
one which has been derived for such media in [1] on the structural-continuum basis:
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where nj are the components of the unit orientation vector, which coincides with the rotational axis of an
ellipsoidal particle, and () is the symbol for averaging with the distribution function of the orientation angles
of rotational axes [2, 3], which characterizes the orientations of polymer macromolecules in a solution due
to hydrodynamic forces and due to rotational Brownian motion.

The equations of a boundary layer in such media, derived as the zeroth approximation in the general
asymptotic solution of the flow equation pvj = Tjij,j and the continuity equation d;; = 0 for large values of the
Reynolds number, are [4]:
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where u and v denote respectively the longitudinal and the transverse component of velocity, V denotes the
velocity of the mainstream V; (n,zc +n2), (in?), and {ngny) are certain functions of ¢ = (9u/8y)/Dr (1, 4]
with Dy denoting the rotational diffusivity. The boundary conditions for Egs. (1) are the same as those
used in the boundary-layer theory for Newtonian fluids.

In order to derive the integral relations, we follow the procedure in [5], i.e., we multiply the first
equation in (1) by (V—u)k k=0, 1, 2, ...) and integrate across the boundary layer fromy = 0toy =4 or
y = «, After a few transformations, we have then )
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For the second set of integral relations [6], we multiply the first equation in (1) by yk k=0, 1, 2, 3,
..) and integrate across the boundary layer over the same limits as before:
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When k = 0, both sets of integral relations (2) and (3) yield the momentum equation
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In order to arrive at an approximate solution to problems in the boundary-layer theory for weak poly-
mer solutions on the basis of integral relations, it is necessary, as in the case of Newtonian fluids, to in-
tegrate the longitudinal velocity over a set of profiles with one or several parameters which satisfy both
the boundary conditions and a certain number of contour constraints. For the parameters in the set of
profiles we will select the contour constraint derived from the first equation in (1) at y = 0;
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Changing here to dimensionless variables u = u/V, y = y/6**, we obtain
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Here (n§n§)y=0, (} + n§.)y=o, and {ngny)y=o are functions of
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1t follows from (6) that the set of profiles of longitudinal velocity in a boundary layer in a weak poly-
mer solution must depend on two parameters: f, = V'6**%/vand A = V/6**Dr: the first one a geometrical

parameter also used in the boundary-layer theory for Newtonian fluids, and the second one a dimensionless
parameter which characterizes the relaxation properties of macromolecules during flow.

Thus, one-parameter methods of calculating the characteristics of a boundary layer are not applicable
to gradiental flow of weak polymer solutions; a two-parameter method requires, in addition to the integral
momentum equation (4), one more equation taken from systems (2)-(3) and thus involves unwieldy calcula-
tions even in the case of Newtonian fluids [7].

The form factor is f, = 0 for a longitudinal flow around a plate (V = const) and an approximate solu~
tion can be found with only a single integral relation. Our problem has been analyzed in [8]. Here we will
show the results obtained for a specific case. The momentum thickness 6* * for an aqueous solution of
rigid ellipsoidal macromolecules at the edge of a plate, with a volume concentration o = 0.01 and with a/b
=10andr =vab?=10""m, L=0.1m, at T = 300°K and V = 0.1 m/sec is 6.7% larger than 6* * for the sol-
vent alone [8].

Evidently, then, the Loitsyanskii method based on finding the generalizably-similar solutions [9] is
the most preferable for approximately calculating the characteristics of a boundary layer in weak polymer
solutions.

Let us now write the universal equation for weak polymer solutions. The approximate solution to
system (1) will be sought in the form
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In the boundary-layer equations (1) we change to the flow function ¥(x, y):
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The boundary conditions for the outer problem of hydromechanics will be
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Changing in (7) and (8) to independent variables fiy k =1, 2, ...)and A, we will seek the solution in

the form
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where { = By/6** and B is a normalizing constant which will be determined later on.

Thus, for determining ®(¢, f;, f;, ..., A) we have a universal equation independent of the velocity
distribution in the mainstream V(x):
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When f; =f,=... =x=20and 2B% = F, then Eq. (9) and the boundary conditions (10) coincide with the

the problem of a longitudinal stream of Newtonian fluid around a plate and, therefore, the Blasius solution
[10] yields B = 0.47.

The case A — 0correspondsto the transition from a weak polymer solution with rigid ellipsoidal ma-
cromolecules to a Newtonian fluid; according to Eq. (9), the obtained universal equation is in this case
identical to the universal equation for a Newtonian fluid.

The universal equation (9) in the two-parameter approximation @ = (V6* */B)& (£, f;, A) can be inte~
grated with the aid of a digital computer.

The solution of specific problems reduces then to an integration of the ordinary differential equation

dz¥*  F
dx V
with the boundary condition
=t X = X,

Along with the approximate methods, however, one may also use numerical methods for a direct so-
lution of the boundary-layer equations (1) in the case of weak polymer solutions.

NOTATION

Tij are the components of the stress tensor;
dij are the components of the strain rate tensor;
p is the pressure;
My His Mo, Mg are the rheological constants defined in [1];
0ij is the Kronecker delta;
vi is the thickness of a boundary layer;
p is the density of a polymer solution;
) is the thickness of a boundary layer;

is the volume concentration of macromolecules;
2a is the rotational axis of a macromolecule;
2b is the equatorial diameter of a macromolecule;
L is the length of a plate.
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